Валидация результатов дистанционного температурного зондирования атмосферы со спутника «Метеор-М» No 2

А. В. Поляков¹, Ю. М. Тимофеев¹, А. Б. Успенский², А. В. Кухарский²

1) Санкт-Петербургский государственный университет 2) Научно-исследовательский центр космической гидрометеорологии «Планета»

Космический аппарат "Метеор-М" №2

Основная целевая аппаратура

http://www.vniiem.ru

IRFS-2 instrument specifications

parameter	requirement
spectral range	5-15 μm (660-2000 cm ⁻¹)
non-apodized spectral resolution	0.4 cm ⁻¹
radiometric calibration error (λ =1112 µm, T=280300 K), no more than	0.5 K
noise equivalent spectral radiance NESR, [W·m ⁻² sr ⁻¹ cm]	3.5 \cdot 10 ⁻⁴ , $\lambda = 6 \mu m$ 1.5 \cdot 10 ⁻⁴ , $\lambda = 13 \mu m$ 4.5 \cdot 10 ⁻⁴ , $\lambda = 15 \mu m$
instantaneous field of view (IFOV) spatial resolution at sub-satellite point	40 mrad 35 km
swath width spatial step	10002500 km 60110 km
sampling period	0.6 s
data rate	580 kb/s
mass	50 kg
power consumption (orbit average)	50 W

IRFS-2: SD spectral radiance and measurement NESR

spectra set: 2015 Feb 05 – Apr 04, total number of the spectra is 1041735

Москва, ИКИ-2016

IRFS-2 spectra analysis: intercomparison with other instruments, selected pairs

IRFS-2 and IASI-B spectra difference in measurements pairs, July 22-23, 2015, water 0.8 surface, 65S – 65N Radiance Difference, mW/(m² sr cm^{.1}) 0.4 0 612pairs over the water Differences of measured spectra IRFS2 minus IASI -0.4 between 65S and 65N Mean difference, water, no polar zones RMSD, water, no polar zones **IRFS-2 NESR** -0.8 660 680 700 720 740 Wavenumber, cm-1

Algorithms for retrieval of the atmospheric and surface parameters from IRFS-2 measurements:

Multiple Linear Regression (MLR) for deriving the first guess,

Artificial Neural Networks (ANN),

Physical inverse algorithm (PIA) method

Radiometric correction of the radiation measurements is preliminary performed Principle Components Analyses was used Selection of cloudless scenes (~30%)

Samples of retrieval 1

Averaging kernels and vertical resolution of our method in the troposphere temperature profile retrieval

Samples of retrieval 2

Temperature profiles (left) and differences (right): Retrieval (PIA) minus NCEP GFS, August, 2015

Схема расположения станций радиозондирования. Черные кружки - все станции (654), красные звездочки — использованные станции для радиуса 250 км и разницы времени 90 мин (281).

Москва, ИКИ-2016

8

Влияние критерия пространственного рассогласования при отборе пар измерений на разность температур IKFS-2 minus Radiosondes, 2015/10 - 2016/05, 1.5 hour. T1.

Tz_T1_151017-160517-50-100-250km-90min.gr

Влияние критерия рассогласования времени при отборе пар измерений на разности температур, расстояние менее 100 км

IKFS-2 minus Radiosondes. With AK, 2015/10 - 2016/09, 100km, T1

Статистические характеристики разности профилей температуры по данным ИКФС-2 и радиозондирования. Согласование – 90минут, 100 км

IKFS-2 minus Radiosondes, 2015/10 - 2016/05, 1.5 hour, 100 km, T2

Критерий качества измерений S. Отбрасываемые результаты.

$$S = \sqrt{\frac{\sum_{i=1,N_T} (J_i^C - J_i^M)^2 / \sigma_i^2}{N_T}}$$

Всего 4914 измерения S < 3 отбрасывается 250 (5)% S < 2 отбрасывается 920 (19%) S < 1.5 отбрасывается1954 (40%)

Критерий качества измерений. Принимаемые результаты.

IKFS-2 minus Radiosondes, 2015/10 - 2016/05, 1.5 hour, 100 km, T1

Москва, ИКИ-2016

_criterium_lt_100km_90min.grf

Среднеквадратичная разность профилей температуры ИКФС-2 и профилей температуры по данным радиозондов и NCEP GFS – вблизи станций радиозондирования и над водной поверхностью.

Примеры сходных сопоставлений некоторых зарубежных спутниковых и радиозондовых профилей температуры

http://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/NPROVS_summary_stats.php#crumb

Выводы:

1. Несмотря на высокое качество спектров в области полосы 15 мкм, среднеквадратичные разности температур, измеренных с помощью ИКФС-2 и радиозондирования, составляют около 2 К в диапазоне давлений 600-15 гПа и возрастают до 4-5 К при приближении к поверхности. Вертикальное осреднение дистанционного метода вносит в эту величину вклад менее 0.6К.

2. В настоящее время определение профиля температуры по ИК спектрам принципиально возможно только в безоблачных случаях (~30%). Используемый при оперативной обработке алгоритм позволяет получать решение в 60 - 95% безоблачных случаев, в зависимости от качества результатов.

3. Требуется дальнейшая работа по совершенствованию алгоритма с целью улучшения точности и количества получаемых профилей температуры, основанная на анализе результатов валидации. В первую очередь – уточнение радиационной модели, привлечение данных МСУ МР для оценки параметров облачности, согласование измерений ИКФС-2и МТВЗА-ГЯ и совместная интерпретация их измерений. Благодарим организации, обеспечившие свободный доступ к данным:

Данные NCEP GFS получены с сайта NOAA nomads.ncdc.noaa.gov

Данные радиозондирования собраны и представлены на сайте университета Вайоминга weather.uwyo.edu

Результаты спектральных измерений IASI представлены EUMETSAT на сайте eoportal.eumetsat.int

Работа выполнена при частичной поддержке гранта РНФ 14-17-00096

Благодарим за внимание